How do we know when the predictions made by a classifier can be trusted? This is a fundamental problem that also has immense practical applicability, especially in safety-critical areas such as medicine and autonomous driving. The de facto approach of using the classifier's softmax outputs as a proxy for trustworthiness suffers from the over-confidence issue; while the most recent works incur problems such as additional retraining cost and accuracy versus trustworthiness trade-off. In this work, we argue that the trustworthiness of a classifier's prediction for a sample is highly associated with two factors: the sample's neighborhood information and the classifier's output. To combine the best of both worlds, we design a model-agnostic post-hoc approach NeighborAgg to leverage the two essential information via an adaptive neighborhood aggregation. Theoretically, we show that NeighborAgg is a generalized version of a one-hop graph convolutional network, inheriting the powerful modeling ability to capture the varying similarity between samples within each class. We also extend our approach to the closely related task of mislabel detection and provide a theoretical coverage guarantee to bound the false negative. Empirically, extensive experiments on image and tabular benchmarks verify our theory and suggest that NeighborAgg outperforms other methods, achieving state-of-the-art trustworthiness performance.
translated by 谷歌翻译
推荐系统通常会从各种用户行为中学习用户兴趣,包括点击和点击后行为(例如,喜欢和喜欢)。但是,这些行为不可避免地表现出受欢迎程度的偏见,从而导致一些不公平的问题:1)对于具有相似质量,更受欢迎的物品的物品会获得更多的曝光; 2)更糟糕的是,受欢迎程度较低的流行物品可能会获得更多的曝光率。现有关于缓解流行偏见的工作会盲目消除偏见,通常忽略项目质量的影响。我们认为,不同用户行为(例如,转换率)之间的关系实际上反映了项目质量。因此,为了处理不公平的问题,我们建议通过考虑多种用户行为来减轻流行性偏见。在这项工作中,我们研究了多行为推荐中相互作用生成过程背后的因果关系。具体来说,我们发现:1)项目受欢迎程度是暴露的项目和用户的点击交互之间的混杂因素,导致第一个不公平; 2)一些隐藏的混杂因素(例如,项目生产者的声誉)影响了项目的流行和质量,导致第二次不公平。为了减轻这些混杂问题,我们提出了一个因果框架来估计因果效应,该因果效应利用后门调整以阻止混杂因素引起的后门路径。在推论阶段,我们消除了受欢迎程度的负面影响,并利用质量的良好效果进行推荐。在两个现实世界数据集上的实验验证了我们提出的框架的有效性,这在不牺牲建议准确性的情况下增强了公平性。
translated by 谷歌翻译
文本对图像综合的症结很大,源于保持输入文本和合成图像之间的跨模式语义一致性的困难。试图直接建模文本图像映射的典型方法只能在文本中捕获指示常见对象或动作但无法学习其空间分布模式的文本中的关键字。规避此限制的一种有效方法是生成图像布局作为指导,这是通过一些方法尝试的。然而,由于输入文本和对象位置的多样性,这些方法无法生成实际有效的布局。在本文中,我们推动在文本到图像生成和布局到图像合成中进行有效的建模。具体而言,我们将文本到序列生成作为序列到序列建模任务,并在变压器上构建我们的模型,以通过对它们之间的顺序依赖性进行建模,以了解对象之间的空间关系。在布局到图像合成的阶段,我们专注于在布局中每个对象中的每个对象学习文本 - 视觉对齐,以精确地将输入文本纳入布局到图像构图合成过程。为了评估生成的布局的质量,我们设计了一个新的度量标准,称为布局质量得分,该评分既考虑了布局中边界框的绝对分布误差,又考虑了它们之间的相互空间关系。在三个数据集上进行的广泛实验证明了我们的方法优于最先进的方法,既可以预测布局和从给定文本综合图像。
translated by 谷歌翻译
盲目图像超分辨率(SR)的典型方法通过直接估算或学习潜在空间中的降解表示来处理未知的降解。这些方法的一个潜在局限性是,他们假设可以通过整合各种手工降解(例如,比科比克下采样)来模拟未知的降解,这不一定是正确的。现实世界中的降解可能超出了手工降解的模拟范围,这被称为新型降解。在这项工作中,我们建议学习一个潜在的降解空间,可以将其从手工制作的(基本)降解中推广到新的降解。然后将其在此潜在空间中获得的新型降解的表示形式被利用,以生成与新型降解一致的降级图像,以构成SR模型的配对训练数据。此外,我们执行各种推断,以使潜在表示空间中的降解后降解与先前的分布(例如高斯分布)相匹配。因此,我们能够采样更多的高质量表示以进行新的降级,以增加SR模型的训练数据。我们对合成数据集和现实数据集进行了广泛的实验,以验证我们在新型降解中盲目超分辨率的有效性和优势。
translated by 谷歌翻译
序列表示学习的主要挑战是捕获远程时间依赖性。监督序列表示学习的典型方法是基于复发性神经网络构建的,以捕获时间依赖性。这些方法的一个潜在局限性是,它们仅在序列中明确对相邻时间步长的一阶信息相互作用进行建模,因此,未完全利用了非相应时间步长之间的高阶相互作用。它极大地限制了建模远程时间依赖性的能力,因为由于时间信息稀释和梯度消失,无法长期保持一阶相互作用所学的时间特征。为了应对这一限制,我们提出了用于监督序列表示学习的非本地复发性神经记忆(NRNM),该学习执行非本地操作\ Mr {通过自我关注机制}以在滑动时间内学习全阶相互作用内存块和模拟内存块之间的全局相互作用以封闭式的复发方式。因此,我们的模型能够捕获远程依赖性。此外,我们的模型可以蒸馏出高阶相互作用中包含的潜在高级特征。我们验证了NRNM在不同模态的三种序列应用上的有效性和概括,包括序列分类,逐步的顺序预测和序列相似性学习。我们的模型与针对这些序列应用中的每个序列应用专门设计的其他最新方法进行了比较。
translated by 谷歌翻译
虽然对图像背景恢复的研究从常规大小的降级图像恢复已经取得了显着的进步,但由于计算复杂性和记忆使用情况的爆炸式增长以及缺陷,恢复超高分辨率(例如4K)图像仍然是一项极具挑战性的任务。带注释的数据。在本文中,我们提出了一种用于超高分辨率图像恢复的新型模型,称为全局逐步生成网络(GLSGN),该模型采用涉及四个恢复途径的逐步恢复策略:三个局部途径和一条全球途径。本地途径着重于以局部但高分辨率的图像贴片的细粒度进行图像恢复,而全球途径则在缩放尺寸但完整的图像上执行图像恢复,以在全球视图中为本地途径提供线索包括语义和噪声模式。为了平滑这四个途径之间的相互协作,我们的GLSGN旨在确保在低级内容,感知注意力,恢复强度和高级语义方面的四个方面的跨道路一致性。作为这项工作的另一个主要贡献,我们还介绍了迄今为止的第一个超高分辨率数据集,以删除反射和降雨条纹,包括4,670个现实世界和合成图像。跨三个典型的图像背景修复任务进行的广泛实验,包括删除图像反射,删除图像雨条和图像去悬来表明我们的GLSGN始终优于最先进的方法。
translated by 谷歌翻译
虽然变压器在各种高级视觉任务中取得了显着性能,但它仍然具有挑战性地利用变压器在图像恢复中的全部潜力。 CRUX在典型的编码器 - 解码器框架中应用了有限的应用变压器,用于图像恢复,从层次的不同深度(尺度)的繁重的自我关注计算负荷和低效通信产生。在本文中,我们为图像恢复提供了一种深度和有效的变换器网络,称为U2-iner,能够使用变压器作为核心操作以在深度编码和解码空间中执行图像恢复。具体地,它利用嵌套的U形结构来促进不同层的不同层的相互作用。此外,我们通过引入要压缩令牌表示的特征过滤机制来优化基本变压器块的计算效率。除了典型的图像恢复方式外,我们的U2-ider还在多个方面进行对比学习,以进一步与背景图像分离噪声分量。对各种图像恢复任务的广泛实验,分别包括反射去除,雨串去除和除去,证明了所提出的U2-inter的有效性。
translated by 谷歌翻译
隐式反馈的无处不是建立推荐系统不可或缺的反馈。但是,它实际上并没有反映用户的实际满意度。例如,在电子商务中,一大部分点击不转化为购买,许多购买结束了否定审查。因此,考虑隐性反馈中的不可避免的噪声是重要的。但是,建议的一点工作已经考虑了隐性反馈的嘈杂性。在这项工作中,我们探讨了向建议学习的识别隐含反馈的中心主题,包括培训和推论。通过观察正常推荐培训的过程,我们发现嘈杂的反馈通常在早期阶段中具有大的损失值。灵感来自这一观察,我们提出了一种新的培训策略,称为自适应去噪培训(ADT),其自适应地修剪了两个范式的嘈杂相互作用(即截断损失和重新减免)。此外,我们考虑额外的反馈(例如,评级)作为辅助信号,提出三种策略,将额外的反馈纳入ADT:FineTuning,预热训练和碰撞推断。我们在广泛使用的二进制交叉熵丢失上实例化了两个范式,并在三个代表推荐模型上测试它们。在三个基准测试中的广泛实验表明ADT在不使用额外反馈的情况下显着提高了正常培训的建议质量。此外,提出的三种策略用于使用额外反馈的主要原因是增强ADT的去噪能力。
translated by 谷歌翻译
Increasing research interests focus on sequential recommender systems, aiming to model dynamic sequence representation precisely. However, the most commonly used loss function in state-of-the-art sequential recommendation models has essential limitations. To name a few, Bayesian Personalized Ranking (BPR) loss suffers the vanishing gradient problem from numerous negative sampling and predictionbiases; Binary Cross-Entropy (BCE) loss subjects to negative sampling numbers, thereby it is likely to ignore valuable negative examples and reduce the training efficiency; Cross-Entropy (CE) loss only focuses on the last timestamp of the training sequence, which causes low utilization of sequence information and results in inferior user sequence representation. To avoid these limitations, in this paper, we propose to calculate Cumulative Cross-Entropy (CCE) loss over the sequence. CCE is simple and direct, which enjoys the virtues of painless deployment, no negative sampling, and effective and efficient training. We conduct extensive experiments on five benchmark datasets to demonstrate the effectiveness and efficiency of CCE. The results show that employing CCE loss on three state-of-the-art models GRU4Rec, SASRec, and S3-Rec can reach 125.63%, 69.90%, and 33.24% average improvement of full ranking NDCG@5, respectively. Using CCE, the performance curve of the models on the test data increases rapidly with the wall clock time, and is superior to that of other loss functions in almost the whole process of model training.
translated by 谷歌翻译
In the scenario of black-box adversarial attack, the target model's parameters are unknown, and the attacker aims to find a successful adversarial perturbation based on query feedback under a query budget. Due to the limited feedback information, existing query-based black-box attack methods often require many queries for attacking each benign example. To reduce query cost, we propose to utilize the feedback information across historical attacks, dubbed example-level adversarial transferability. Specifically, by treating the attack on each benign example as one task, we develop a meta-learning framework by training a meta-generator to produce perturbations conditioned on benign examples. When attacking a new benign example, the meta generator can be quickly fine-tuned based on the feedback information of the new task as well as a few historical attacks to produce effective perturbations. Moreover, since the meta-train procedure consumes many queries to learn a generalizable generator, we utilize model-level adversarial transferability to train the meta-generator on a white-box surrogate model, then transfer it to help the attack against the target model. The proposed framework with the two types of adversarial transferability can be naturally combined with any off-the-shelf query-based attack methods to boost their performance, which is verified by extensive experiments.
translated by 谷歌翻译